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Game Description 
 

Blokus is an strategy board game that is played by 4 people, where players take 

turns trying to place one of 21 free polyominoes onto a 20 by 20 grid. Each player 

starts in their respective corner, and must place pieces that touch the corners of 

their own tiles, but do not touch edges of their own tiles. The game ends when no 

players can place any pieces, and the victor is determined by counting the 

number of tiles placed on the board and giving a +15 bonus to players who placed 

all their pieces and a +5 bonus if their last piece was the 1x1 piece. 

 
Figure 1.  A finished game where no players can place any more tiles. Notice how no tile of 

the same color is adjacent to each other, but all tiles of the same color are touching 
corners.  
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Original Goals 
 

Our objective was to create an intelligent agent that can play this board game 

both against humans and other agents. As Blokus is a perfect information, 

turn-based game, we wanted to explore various adversarial search algorithms 

that deal with this decision theory such as minimax. Due to the exponential 

increase in size of the search tree with each branch having ~100 valid moves, we 

also wanted to create and test various heuristics devised from available strategy 

guides and best practices. After this preliminary agent was devised, we 

envisioned using machine learning concepts and having the agents play against 

humans and each other to tweak the heuristic constants and possibly generate 

endgame tables. 

 

Accomplished Goals Overview 
 

We initially began with a simple informed search algorithm that would use a 

single strategy and a hill-climbing approach to choose the next move. We tested 

these preliminary AIs against Blokus novices and pros and found that though 

certain strategies could beat first-time players of Blokus, they failed to win a 

single game against Tomasz (self-proclaimed Blokus expert). 

 

We then combined all the strategies and and assigned a weight to each. Using an 

evolutionary algorithm, we simulated 4 AIs playing against each other and 

eventually arrived at a local maxima of weights. Meanwhile, we also observed 

various interesting emergent behaviors that arose from combining strategies and 

varying their weight. Finally, we playtested these final AIs against Tomasz and 

other volunteers and surprisingly found that they were able to win against 

Tomasz in 60% of games. With this, we definitely achieved our goal of creating a 

strong Blokus AI capable of beating humans. 
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Informed Search 
 

The first step to building our AI was to generate list of valid moves (i.e. valid 

positions and rotations of tiles) based on the current game board. Generating this 

move list efficiently proved to be quite difficult, but eventually was accomplished 

by limiting iteration to only available corners on the map and other optimizations 

that reduced time-costly loops.  

 

With this valid move list complete, we implemented an agent that choose a 

random move each turn. As shown in Figure 2, we found the number of possible 

moves with this AI started off relatively small at the 200 range but quickly 

ballooned to over 650 as more corners were available to place pieces onto. 

Surprisingly, the number of possible moves seems to decrease in distinct steps. 

Though we cannot confidently determine the cause of these stepwise deductions, 

we hypothesize that they correspond to eliminating n-sized category of pieces, 

where n corresponds to the number of squares contained within the piece.  

 

 

Figure 2.  Maximum observed number of possible moves per turn. 

 

Nonetheless, with a maximum observed branching factor of 650, we determined 

that any minimax algorithm would be too time costly for our game as it would 
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take a depth of five just to reach the next move of the agent in the search tree. 

Even for the endgame, where players have branching factors of around 60 a 

minimax algorithm would still prove to be too costly given that there are 4 

players to cycle through before returning to your turn. 

 

Defining Heuristics 
 
With our original idea for minimax rejected, the majority of this project was 

focused on defining strategies (functions) and weights to create a best-playing 

 heuristic. These strategies were determined based on our own knowledge of 

playing Blokus and online strategy guides. The details of each are listed below. 

Biggest Piece (BP) 

This strategy prioritizes moves that utilize pieces while contain many squares. 

Since score is directly proportional to number of tiles placed, this function 

directly corresponds to the winning. Furthermore, it indirectly also increases 

score by ensuring the smallest 1x1 piece is placed last for the extra +5 bonus.  

 

Figure 3:  The Red AI is using BP strategy, evidenced by its use of 5-sized pieces, compared to 

the random selection of the other AIs.  
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Closest to Middle (CM) 

A common theme in online strategy guides for Blokus is to immediately place 

your pieces towards the center to “capture” as much area as possible. This would 

give the player more corner options and space for future moves. 

 

Figure 4:  The Red AI is using CM strategy, evidenced by its path to the middle. 

Adds Most Corners (AMC) 

Players with more corners generally have more options as to where to place their 

pieces. Therefore, this strategy prioritizes moves that add many new corners onto 

the map, and disincentivizes occupying many corners with one piece. 

 

Figure 5:  The Red AI is using AMC strategy, evidenced by its use of pieces with the most 

corners. 
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Blocks Most Corners (BMC) 

Likewise, players have an incentive to prevent others from amassing too many 

corners to deny them options and stop their growth. This strategy’s value is 

therefore proportional to the number of enemy corners occupied by the 

placement of a piece. 

 

Figure 6:  The Red AI is using BMC strategy, evidenced by how the T-shape and L-shape 

pieces block corners Blue could use. 

 

Endgame Possible Moves (EPM) 

Similar to  Adds Most Corners , this strategy is based on the assumption that more 

options will result in a higher score. However, since calculating the total number 

of possible moves involves generating each possible move, this function proved to 

be prohibitively expensive for early to mid game. Therefore, we set this strategy 

to only activate on Turn 12 and return zero for all previous turns.  
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Figure 7:  The Red AI is using EPM strategy, evidenced by the placement of the 1x1 piece in 

the top left corner, which allowed for the placement of the 1x4 piece. 

 

Hill-Climbing Analysis 
For each strategy above, we defined a hill-climbing algorithm that would simply 

choose the highest priority piece as the current move. Tomasz, our local Blokus 

expert, then played against three preliminary AIs that each utilized one of the 

strategies to evaluate their strength. We also invited some of our friends to 

participate and finally pitted these AIs against each other to see their results. 

 

Strategy  % games won vs. Tomasz  % games won vs. others 

Biggest Piece  0%  40% 

Closest to Middle  0%  10% 

Adds Most Corners  0%  40% 

Blocks Most Corners  0%  0% 

Endgame Possible 
Moves 

0%   10% 

Random Moves  0%  0% 

Table 1.  Three AIs of single strategy were played against Tomasz and other volunteers.  
AI win rate was recorded with 5 sample games against Tomasz and 10 sample games 

against other volunteers. 
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Figure 8.  BP, CM, AMC, and BMC AIs were played against each other for 50 games.  

The percentage of games won is displayed above. 
 

 
Figure 9.  End game state where Blue AI (BP) won with a max score against Red (AMC), 

Green (CM), and Yellow (BMC) . 
 
It was clear from these results that a mere hill-climbing approach to our AI that 

focuses on a single strategy would not be sufficient. Nonetheless, from the results 

of the AI vs. AI testing we found that the  Biggest Piece  strategy performed 

significantly better than other strategies. However, since it did not completely 

dominate the other strategies, we decided to implement a weighted heuristic. 
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Evolutionary Algorithm 
We defined each of the previous strategies as a “gene” in our algorithm and 

initially gave each AI a random vector of weights, with each weight 

corresponding to a strategy. After simulating a full game between four AI’s, the AI 

with the greatest score was declared the winner. The winner’s weights were 

“mutated” by sampling from a Gaussian Distribution with the mean equal to the 

weights and a variance of 0.1. These new sampled weights were assigned to two 

of the four AI’s, to act as the offspring of the original winner. The other two AI’s 

are once again assigned random weights, to serve as evolutionary pressure. This 

update process is repeated after each simulation, leading to emergence of a few 

dominant strategy weighings. 

 

Evolutionary Observations 
We implemented the algorithm by adding genes in one at a time. The first two 

genes were  Biggest First  and  Closest to Middle . Surprisingly we observed that 

both AIs with large BF weights and AIs with large CM weights behaved similarly 

in the first few moves as they both placed their largest pieces first. This aligns 

with our reasoning that larger pieces will enable players to reach the center first. 

The two strategies seemed to balance each other as BF’s failure to capture space 

was counteracted by CM’s wasteful placement of small pieces to maintain its 

central position, and this observation was supported by the gene’s constantly 

fluctuating weights. 

 

The next gene added was  Adds Most Corners . After simulating the evolutionary 

algorithm, we found although CM’s weight was drastically reduced compared to 

both BF and AMC, the AI behaved in a similar fashion to CM in the first few 

moves as it placed pieces towards the center. We concluded that by prioritizing 

adding corners, the AI indirectly prefers the central board as the empty space 

allows for more corners than pieces placed along the edge. 
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Conversely, most strategy guides recommend players to block their enemies 

corners with their pieces. However, after adding this BMC gene and running the 

evolutionary simulation we noticed that the BMC would typically be muted. But 

after manually creating an AI with a high BMC and low weights for other genes, 

we found that this combination would dominate the previous best contenders, 

usually placing first or second score-wise. This adversarial AI also lowered the 

average score for game from 90-100 to the 70-80 range. From this polarity we 

concluded that blocking corners must be an all-in strategy where the AI either 

fully commits to blocking opponents or it commits to improving its own board 

position by increasing its own corner count. 

 

The final gene added was  Endgame Possible Moves . We found that the presence of 

this gene was crucial for a well-performing AI strategy, evidenced by the fact that 

AIs that weighted EPM highly would consistently beat AIs that did not. We had 

initially hypothesized that small pieces placed in the endgame would 

unimportant relative to the pentominoes in the early and mid game. However, 

our intuition was wrong as the presence of this gene would frequently cause the 

AI to win by margins of less than 5. 

 

After simulating the evolutionary algorithm, we found a local maxima of weights 

and play-tested 3 AIs with these weights against Tomasz and other volunteers. 

The final results are detailed below.  

 

BF  CM  AMC  BMC  EPM 

0.224  0.058  0.420  0.137  0.138 

Table 2.  The final weights obtained at a local maxima after simulating the  
evolutionary algorithm 100 times. 
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Win rate vs. Tomasz  Win rate vs. Others 

53%  87% 

Table 3.  Three AIs with using the weights from Table 2 played against Tomasz (15 times) 
and other novice volunteers (30 times). 

 

 

Figure 10.  End game state with Tomasz (Blue) against three final AI’s.  
Final scores: Blue - 71, Red - 72, Green - 73, Yellow - 66 

Conclusion 
Overall, we believe we succeeded in creating a sufficiently strong AI to pose a 

significant challenge on an experienced player. Initially, we chose a few strategies 

which experts and strategy guides suggested, and assigned them one at a time to 

the AI’s. As expected, these AI’s performed better than a Random AI, and even 

managed to beat several novice players. However, when pitted against an 

experienced player such as Tomasz, these simple AI’s fell short.  

 

With evolutionary programming, we managed to not only combine strategies, but 

also evolutionary weigh their relative importance for determining which move to 

pick; this created a significantly more complex and robust AI. After many 

simulations, we found a few AI weight vectors which kept dominating the game. 

By using these weights to create new AI’s,  we managed to beat almost all novice 

players and some experienced players, including Tomasz.  
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Further Work 
Given more time and resources, we would implement a few crucial 

improvements for this AI project. One common problem that came up was how 

time (number of turns taken in the game) should affect the weights. For example, 

initially it is a good strategy to get to the middle/across the board (CM), but later it 

is better to invade other AI’s corners and spread out. Ideally, we would 

implement time by creating a weight vector consisting of the weights of our 

strategies at every single time step; a more optimal way would be to divide the 

game into “early”, “mid”, and “late” stages. By doing so, the AI’s overall strategy 

could change as the game progresses. 

 

Another problem we encountered was the computational complexity of finding 

moves. Given a 20x20 grid, 21 pieces, and 4 players even a single level minimax 

tree takes too long to compute. With more computational power, we could 

perhaps consider more complex AI strategy, or at least Endgame Possible Moves 

(EPM) to no longer be limited to just the endgame. 
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